
ELEMENTARY EXTENSIONS OF MODELS 
OF SET THEORY(1) 

BY 

H. JEROME KEISLER AND MICHAEL MORLEY 

ABSTRACT 

Model Theoretic methods are used to extend models of set theory while 
leaving specified sets fixed. In particular, every countable model 91 of ZF has: 
(i) an extension leaving every set in 91 fixed, and (ii) for each (in 91) regular 
cardinal a an extension enlarging a but leaving each cardinal less than a fixed. 

Let 9.I = (A, E )  be a model of  Zermelo-Fraenkel set theory (ZF) and let a be 
a cardinal in 91. We consider questions of  the follcwing kind: 

I. Does 9.I have an elementary extension ~3 = (B,F) such that a is enlarged 
but every cardinal b < a in 9.I is left fixed? 

II. Does 9.I have a proper elementary extension in which every cardinal of 
9i is left fixed? 

We shall prove that the answer to I is "ye s "  if  91 is countable and a is a regular 

cardinal in 91 (Theorem 2.2). The answer to II is "yes"  when 91 is a countable 
model (Theorem 4.2). We shall also obtain a number of other results of this sort. 

Section 1 contains the necessary notation. In Section 2 we consider questions 
like I. Section 3 contains theorems about extensions in which cardinals of the 
model have prescribed cofinalities as seen from the outside. Finally, Section 4 
deals with questions like II. The Epilogue indicates how our theorems may be 
generalized to set theories other than ZF. 

The results of  [8], [17] yield (uncountable) models of ZF for which both I and 
II fail. By contrast, MacDowell and Specker [10] proved that the analogue of II 
is true for every model of  number theory. 

Section 1. We shall write 91--.~3 if~3 is an elementary extension of  91; for 
this and other basic notions from model theory see Tarski and Vaught [13]. 
Two fundamental results about elementary extensions, proved in [13], are: 

1.1. If  910 -'~ 911 and 911--'~912 then 910-'~912. 
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1.2. If  91o, 911, '",91p, '",  fl < ~ is an elementary chain (that is, )' < 8 < 
implies 91~ ~ I p ) ,  then the union Ua<~9.tp is an elementary extension of each 91a. 

By a theory T, we shall mean a set of sentences in a first order predicate logic. 
A sentence ~b is said to be consistent with a theory T if T U {~b} is consistent. 
The notation 9.[ ~ ~b means that the sentence ~b holds in the model 9I. We denote 
by a(v o, ..., v,) a formula having no free variable other than Vo,..., v,. A formula 
a(Vo) is consistent with T i f  (3vo)tr(Vo) is. If  E is a set of formulas tr(Vo), we shall 
say that 91 omits Z if there is no element ~ ~A which satisfies every tr ~Y. in 91. 

The theory of 91, Th(91), is the set {tk: 9.[ ~ 4}.  
Our metalanguage will be an informal set theory which is like Zermelo-Fraenkel 

set theory (ZF) plus the axiom of choice. We shall be investigating models of  the 
formal theory ZF for instance as formulated in [11]. Quotes around an informal 
statement will denote the corresponding formal statement of ZF. 

Since we shall study ZF without the axiom of  choice, we must be careful how we 
define certain standard notions of  ZF. By a cardinal we shall mean an initial 
ordinal. The notation [X[ = x means that the set X can be well ordered and has 
cardinal x. If (X,  < )  is a simply ordered set, we say that Y is cofinal in (X,  < ) 
if  Y _= X and for allx ~X  there is a y e Y with x < y; the cofinality of (X,  < )  is 
the least ordinal 8 such that there is a set of order type 8 cofinal in (X,  < ).  If  ct is 
a limit ordinal, then cf(ct) denotes the cofinality of (~, < ) .  A regular cardinal 
is an infinite cardinal x such that ~ = cf(x). The result below can be proved in 

ZF (without the axiom of choice). 
1.3. Let x be an infinite limit ordinal. The following are equivalent: 
(i) x is a regular cardinal. 
(ii) For  every 8 < x and every function f on x into 8, there exists )' < 8 such 

that f -a{) ,}  is cofinal in (x,  < ). 
(iii) For every 8 < x and every function f on x into 8, there exists )' < 8 such 

that [f-l{r} [-- 
One can also prove in ZF that: 

1.4. For every infinite limit ordinal ~, cf(~) is a regular cardinal. 

We shall use 91 = <A, E) ,  ~ = (B, F ) , . . .  to denote models of ZF, and we shall 
understand once and for all that A and E go with 91, B and F go with ~ ,  etc. 
If  a ~A, we shall write 

~ = {b~A: bEa}. 

Thus aE is the set of  all "members"  of  a in the model 91. 
We must be careful to distinguish between the power of a in the model 91, 

and the power of  the set ae. The former is an element b of 91 such that 91 ~ b = [ a [, 

while the latter is the cardinal number l I" We shall say that a is a cardinal of 
91 if91 ~ "a  is a cardinal".  
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Let 9.I, ~3 be models of ZF and 92-~3.  An element a e A  is said to befixed 
(by ~ )  if aF = aE, and enlarged if ar ~ ae. Note that we always have aE ~- aF. 
If  a is fixed then every cardinal less than a (in 92) is fixed. Conversely, if  cf(a) 
and every cardinal less than a are fixed, a is fixed. In particular, if a is not regular 
and is enlarged then some cardinal less than a is enlarged. 

Section 2. In this section we prove results concerning elementary extensions 
which leave one cardinal fixed and enlarge another cardinal. Our chief tool will 
be the following theorem for which a proof can be found in [3] or [16]. 

THEOREM 2.1. Let T be a consistent theory in a countable logic and let S 
be a finite or countable set of sets of formulas a(Vo). Suppose that each ~,e S 
has the property 

(*) for each formuladP(Vo) which is consistent with T 
there exists a(Vo)~Y, such that tP(Vo)A-la(Vo) is 
consistent with T. 

Then T has a countable model which omits each ~, e S. 

THEOREM 2.2. Let 92 be a countable model of ZF and let a be a regular 
cardinal o f~ .  Then there is an elementary extension ~ >-9.[ which leaves each 
b ~aefixed but such that[aF! = o91. 

Proof. We shall prove that 92 has a countable elementary extension 9,1" which 
leaves each b ~ an fixed but enlarges a. After this has been shown, we may complete 
the proof in the following way. Form an elementary chain 

92 = 920 "< 921 "<"" "< 92~ "<"" 0t < 921, 

where 92~+ 1 is a model 92* enlarging ~ and leaving each b e an fixed, and for 
limit c~, ~ = (.Jp<~92a. The required model ~3 is the union of the elementary chain, 

U 92 . 
~<~t~ 1 

To construct the model 9A*, we first enlarge our language by adding a new 
individual constant kc for each c e A, and one extra individual constant k. Let T 
be the theory with the following axioms. 

Th((A, E, c)cea); 

k~k~; 

kb # k, for each b E ae. 

T is clearly consistent. We note that a formula t~(vo, k) is consistent with T if and 
only if 

(1) (A, E C)~A ~ "the set {or ~ a :3Vo~b(v o vt)} is cofinal with a" .  
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For each b e at, let ~;b be the set of formulas 

Vo ~ k~, c~b~; 

D O s k  b . 

Let S be the countable set 

Israel J. Math., 

S = {Zb : b ~ a~}. 

Now consider any ~b~S and any formula ~b(vo, k) which is consistent with T. 
There exist e, f s  A such that the following three statements are true in the model 
<A,E, c)c ~A: 

"e = {01 E a: 3 Vo~(V o, or)}"; 

" f  is a function on e into b + 1"; 

"for all vl~ a, f(vl)  is the least ordinal vo such that 

Vo = b V ~(Vo, vl)". 

Since a is a regular cardinal in 9A, and 

9A ~ "e is cofinal with a" ,  

there exists g E A such that 

9A ~ "g < b and f - l ({g})  is cofinal with a" .  

If g = b then the sentence 

(B Vo) (~b(Vo, k) A 7 Vo ~ k~) 

is consistent with T. On the other hand, if g e bt then 

(3 vo)(~(Vo, k) A vo = ks) 

is consistent with T. Hence Eb has the property (*). It follows from Theorem 2.1 
that T has a countable model (A*,E*,kc, k ) ~ x  which omits each Eb, b s a  t. 
Interpreting each k~ by c, c~A, we see that ~ - ~  9I*. Since each Eb is omitted, 
each b s at is fixed. But the interpretation of k belongs to at .  - at, so a is enlarged. 
Our proof is complete. 

Using the two-cardinal theorem of Chang [1], we get at once the following 
corollary. 

COROLLARY 2.3. (GCH). Let 9A be a countable model of ZF, let a be a regular 
cardinal of  9.I, and let x be a regular cardinal. Then there is an elementary 
extension ~3 >- 9~ such that I bF I = ~c for all infinite b ~ at, and l a~ I = x+. 

Wenow turn to some stronger theorems which are proved by the same methods 
as Theorem 2.2. 
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THEOREM 2.4. In Theorem 2.2. the model ~3 may be chosen so that ~3 is not 
well-founded, and in fact so that the ordered set 

(a F - a t ,  F )  

contains a subset of  order type tl• ooj (r 1 is the order type of the raticr, ats). 

Proof. We need only modify our construction of the model 9.I* in such a way 
that (an,  - a t ,  E*)  contains a subset of  order type ~/. To do this we add to our 
language an individual constant kc for each c e A and an individual constant k 
for each rational number r. Let T be the theory with the following axioms: 

Th ((A,E,c>c~,O; 

kr ~ k,, r rational; 

kh e k,, r ra t ionaland bea t ;  

k, e k., r, s rational and r < s. 

We note that a formula 

 (vo, k,,,..., kr,), 

where rl < "-" < rn are rational, is consistent with T if and only if (A,E,c)c~.~ 
satisfies the sentence 

"the set {vl e a: (3 roy2"" on) 4~ (VoVlV2"" vn) 

and vl e v2 e . . .  e vn e a} is cofinal in a " .  

From here on we argue just as in the proof  of'l-Eecrcm 2.2. 
A weaker form of  the above theorem was announced in [8]. Using the methods 

of [8], Chang improved the result stated there. The present result gives still more 
information and the proof is different. 

REMARK. In Theorem 2.4 the order type r/• co I is "best possible". To see this, 
note that an order type is embeddable in r/• co 1 if and only if every proper initial 
segment of  it is finite or countable. Consider an arbitrary countable model 9~ of  
ZF and let a be a successor cardinal, a = b +, in 9.I. Let ~ ~- 9.I be an elementary 
extension which leaves b fixed. Then each c e a r  has power at most b in ~ ,  and 

hence I cF I < co. It follows that the order type of ( a t ,  F )  has only finite or countable 

proper initial segments, and hence is embeddable in r/• o91. 
We now take up the problem of replacing the cardinal a of 9~ in "l~ecrcm 2.2 

by a set of  cardinals of  9~. 

THEOREM 2.5. Let 9.1 be a countable model of ZF, and let X ,  Y ~ A be non- 
empty sets of cardinals of 9.I such that X is infinite and 

X ~  ~{bE :  be.Y}. 
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Assume that: 

(1) for  all a ~ X and b e Y there exists c ~ Y such that 

~I ~ "for  every function f on b into a, there exists d e a 

such that I f - t ( {d} ) l  >-_ c".  

Then: 

(2) there ex i s t s~  ~- 9.I such that each a a X  is fixed but for  all b ~ Y, I brl = co t . 

Praof. We first prove: 
(3) for each b e Y there is a countable ~ ~- 9.I such that each a e X is fixed but b 

is enlarged. 
Let b e Y and let T be the theory with the axioms: 

Th ((.4, E, c)  c ~ 4); 

ko a k, for each a e X; 

k e k b ;  

k ~ kc for each c e  bE; 

¢(k) ~ I{v~ e kb: ¢(v,)} [ > ka, 

for each sentence ¢(k) and each a e n {ce : c e Y}. 
Since any finite number of axioms of  T can be satisfied in % T is consistent. 

A formula q~(v o, k) is consistent with 7' if and only if for all a e n {cE : c e Y}, 

""1 {v, b : 3 Vo¢(Vo, v,)}l > a", 

and hence iff for some c e Y, 

We let S b:  the set of  all sets 

Zo = {Vo e k.} U{Vo ¢ k c :  c e a } ,  

where a ~X. Using (1) and our criterion for consistency, verify that each ~ , e S  

satisfies (*). The proof of (3) is completed by applying Theorem 2.1 in the obvious 
way. 

Observe that (1) holds for ~ in place of 9A. We may thus prove (2) by using (3) 
col times being careful to enlarge each b ~ Y co~ times in the process. 

We do not know whether condition (1) implies the following strong form of (2): 
(4) There exists ~ >- 9I which leaves each a s X fixed but 

]FI{bF: b~ Y}I =CO,. 
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Note that condition (1) is implied by the stronger condition 

(1") For every b E Y there exists c ~ Y such that in 9.[, 
c is regular and c < b. 

One can prove that (1") implies (2) simply by applying Theorem 2.1 o~1 times, 
nstead of using the more complicated proof of Theorem 2.5. If  every infinite 
sucessor cardinal of 9A is regular, and Y is a set of infinite cardinals of 9A, then 
(1) and (1") are almost the same and Theorem 2.5 is a corollary Of "lheorem 2.1. 
The special case of Theorem 2.5 where X is the set of all standard natural numbers 
is a trivial consequence of the compactness theorem. 

Theorem 2.5 is of interest when X and Y are both sets of(non-standard) natural 
numbers of 9.[. For in this case we have the following corollary. 

COROLLARY 2.6. Let 9~ be a countable model of ZF and let X be an infinite 
initial segment of  the natural numbers ofgA. Then (1'), (2') below are equivalent: 

(1') For all a l , a z ~ X ,  a l a 2 e X .  
(2') There exists ~ >. 9.[ which leaves each a ~ X fixed but such that [ brl = o91 

for  each cardinal b ~ X o f ~ .  

REMARK. If  in Theorem 2.5 we assume that X u Y is the set of all cardinals 
of 9A, then conditions (1) and (2) are equivalent to each other. 

Theorem 2.1 is false for uncountable theories (see [5]); thus our arguments 
in this section do not work for uncountable models of ZF. Indeed, it follows 
from the results of [8] that Theorem 2.2 fails for natural models (R(~),e) 
of ZF. 

Section 3. In this section we apply the methods of Section 2 to uncountable 
models. We are not able to construct extensions which leave a cardinal a fixed, 
but we can control the cofinality of a as seen from the outside. We use a weak 
version of Theorem 2.1, due to Chang [2], which applies to uncountable languages. 

THEOREM 3.1. Let T be a consistent theory in a logic with at most x symbols, 
where x is a regular cardinal. Let S be a set of at most K sets of  forrnulas 

z = {cr~(Vo): ~ < ,c}, 

where 5". has the property (*) of 2.1 and also the property: 

(**) For all ~ < fl < x, T 1- VVo(aa(Vo) ~ a~(Vo) ). 

Then T has a model of  power x which omits each E ~ S. 
In [2] the theorem was stated only for complete theories T, but Chang later 

pointed out that it holds for arbitrary consistent theories. "l?he difficulty in 
extending the results of Section 2 to uncountable models is that the set of formulas 
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vo~kbAvo~k a, b~a~ 

does not satisfy the condition (**) when aE is uncountable. However, the set of  
formulas 

k~evoA vo~ka, o~ <r. 

do~s s~tisfy (**) when the k~ represent increasing elements of a~. In certain cases 
this will enable us to extend the model 92 in such a way that at is cct~tlal in (a t  ,~>. 

Our main theorem in this section is the following. 

THEOREM 3.2. Let 92 be a model of  ZF, let ic, 2 be two regular cardinals 
at least one of which is > [ A [, and let a, b be distinct regular cardinals of 9 .  
Then there exists ~ >-9~ such that (as, F )  has cofinality lc and (b e, F> has 
cofinality 2. 

Actually we shall prove the following slightly more general result. 

THEOREM 3.3. Let 92, r, 2 be as in Theorem 3.2, and let X,  Y ~_ A be two 
disjoint sets of regular cardinals of ~. Then there exists ~ >- 9.I such that: 

(i) < ar, F)  has cofinality K for all a ~ X. 
(ii) <bp, F)  has cofinality 2for all b ~ Y. 
(iii) The set of all ordinals o f ~  has cofinality ~. 
(iv) [ B[ = max (k, 2). 

Proof. The argument is quite similar to the proof of Theorem 2.1, so we may 
omit some of the details. Let us first take up the case where ~c _>- 2. (The other 
case differs only for (iii).) Then [A]=< r. By the compactness theorem, every 
model 920 of ZF has an elementary extension 921 such that 

IA, I = IAol, 
(2) 921 contains an ordinal greater than every ordinal of 92o, 
(3) for each regular cardinal a of 92o there exists c ~ ar~ which is ~rcater than 

every element of aEo. 
Here "greater" is with respect to the relation E~. U~,iv,~ t~is cl:~,ervatfcl~ ~( ti~es 

we may form an elementary chain 

92 = Ao .< 9~ -<. . . .<  9~,-< ... ,~ < ~: 

whose union is a model ~o  of power lc such that: 
(4) for all a s X, (aro, Fo) has cofinality r ;  
(5) <Ord, Fo) has cofinality r,  where Ord is the set of all erdivals of ~o.  
Enlarge the language by adding a new constant k a for each a ~ B o. For each 

a ~ X, let a~, ~ < ~c, be a strictly increasing cofinal sequence in the ordered set 
<apo, Fo). Let S contain, for each a ~X, the following set of formulas: 

ko. sVo A vosk , 
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Also, let % ~ < x, be a strictly increasing cofinal sequence in (Ord, Fo), and 
let S contain the additional set of formulas: 

kc,, ~ Oo, ~ < to. 

Now suppose b ~ Y, add a new constant I to the language and let T b be the theory 
with the following axioms: 

Th((Bo, Fo, kc)c ~ ao); 

kc e I/~ l s kb. for each c ~ bro. 

Using the assumptions that X n Y = 0 and X, Y contain only regular cardinals 
Of~o, it can be shown that Tb, S satisfy the hylcetheses of "II-,ecrcm 3.1. "lherefore 
Tb has a model 

(B', + ', ko 1)~, 8o 

of power x which omits each Z e S. ~ '  is an elementary extersicn cf ~o s~ch lhat 
for each a eX  aro is cofinal in (a r , ,F ' ) ,  the set Ord is ccfral  in the cldirals 
of ~ ' ,  and the interpretation of I belel~gS to br' but is greater than every element 

of bro. 
Well order the set Y, say Y = {b~,~ < x}, and apply the above construction 

once for each ct < x. This gives us an elementary chain 

~ o - < ~ t - < . - . - < ~  ~ - < . . . ,  ~ < r ,  

taking unions at the limit ordinals, where each ~ + 1  contains an element of b~ 
which is greater than every element of (b~)ro. Let ~1 be the union of the chain. 
Then ~1 has power x and the prol~erties 

(6) for all a eX,  aro is a cofinal in (ar, ,F1); 
(7) for all b e Y, bF, contains an element greater than every element of bro ; 
(8) the ordinals o f ~  o are cofi~al in the ord~rals cf ~1. 
Repeat the construction o f ~ l  from ~o 2 times. "[his yields an elementary d:ain 

~o < ~  < " "  " < ~ ' < ' " ,  6 < 2 ,  

again taking unions at limit ordinals. The union 

of this elementary chain has the desired properties (i)-(iv). 
In case 2 > x we argue in the same way except that r and 2 are interchanged 

and the set of formulas 

k~ ~v0, ~ < 2  

is left out of S. Instead of the elementary chain 



58 H. JEROME KEISLER AND MICHAEL MORLEY Israel J. Math., 

~o  <~31 <( . . . .< ~ ' ~  . . . ,  

we form the chain 

~o  "<~  o ~ t  .< . . . .< ~ ,  .< "" ,  

where ~ o  contains an ordinal greater than all the ordinals of f13 o. The theorem 
is proved. 

The following questions are open. Can one prove a similar theorem for 
three regular cardinals x, 2, # and three sets X, Y, Z _~ A ? Can the assumption 
[ A [ < max (x, 2) be dropped in Theorem 3.2 9. 

Section 4. In this section we obtain some results concerning extensions of 
arbitrarily high power which leave particular sets fixed. It happens that the proofs 
are considerably simpler in the case of models in which the axiom of choice (AC) 
holds. We shall consider only such models in this section and indicate in an 
appendix how our proofs may be modified for the more general case. The methods 
used are related to those of 1-12]. In particular, we use a partition theorem of 
Erd6s and Rado, [4]. 

For each cardinal x and each ordinal ~ define inductively a cardinal 2~ by 2~ = x 
and for 0~ > 0, 2~ = [.J {2 x ] (3 fl < ~) (2 = 2~)}. Where 2 x is cardinal exponentiation. 
In particular 2~ = :a, and thus the generalized continuum hypothesis may be 
stated as "~ = co, for all ~. If  n ~ co and A is a set let A ~") be the set of all subsets 
of A having exactly n elements. 

THEOREM 4.1. (ERDOS and RADO). Suppose lA[> 21, ~ infinite, 

A in+l) = U {c i :  i~I} 

and l I [ < x. rhen there is a B c_ A and an i e l such that l B[ > x and Bt"+" _c C,. 
For a proof see [4] or the appendix to this paper where we state and prove 

a form of the theorem which does not depend on the axiom of choice. 

THEOREM 4.2. Suppose 9.[ is a countable model o f  Z F  and AC. Then for  
every linearly ordered set (X, < )  there is a model ~ >- 9~ such that: 

(i) each a e A  is left fixed; and 
(ii) (X, < )  is isomorphically embeddable in ( B , F )  (and hence [B[ >= [X{). 

Proof. Consider Th((A,E,a)a~A) .  For each formula ~b having n + 1 free 
variables we add an n-ary function symbol f (the Skolem function) and the 
sentences: 

(i) (Vv~ ... v,)((3 Vo)~ (Vo, " .  v,) .-, 

~(/(v~, . . . ,  v2, v,,..,  v,)) 
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We also add a linearly ordered set (X,  < ) of new individual constants and the 
sentences: 

(II) x e y (for all x < y in X). 

Let t be the set of  terms formed from the Skolem functions and {(t.,a.)} an 

enumeration of  t x A. Let / be some object distinct from the elements of  A and 
H a function: co --, A L) { ] }. 

Corresponding to H we define the sets of sentences 

(III) 

and 

T,,(xx,..- Xk) = a (whenever z, has k free variables, xl < "" < Xk in X 
and n(n) = a) 

(IV) ~.(xl"'" Xk) ¢ a. (whenever z. has k free variables, 

xx < "'" < Xk in X and H(n) = / ' )  

Suppose I-IV were consistent with Th((A, E, a),, ~A) and hence had a model. 
From I it follows that the closure of  X under the Skolem functions is the universe 

of  an elementary subsystem and from III and IV that any element in this closure 
is either already in A or is not in ae for any a in A. Therefore to prove the theorem 
it will suffice to define H so that I-IV are consistent with Th((A,  E, a)a ~A). 

The Skolem functions may not be definable in 7h((A,E,a)o~.4). But, since 
the axiom of choice holds in 9I, there is for every formula ~b(Vo,..- Vk) and every 
b ~ A some function f ~ A defined on b k which satisfies I. Indeed, if we thus limit 
their domain to a set of 91 we can find functions corresponding to any finite 
number of Skolem terms. In particular, let b ~ A be a set of ordinals of 9~ and 
(%(vl,-.. Vk), ao) the first element in the enumeration of  t x A. 

We define a partition on b (k)by letting xl < "" < Xk be equivalent to yx < . . .  <Yk 
if either (i) Zo(Xl,"',Xk)= zo(Yx,'"yk)~ao or (ii) neither %(X1""Xk) nor 
zo(Y~ "'" Yk) e ao. Since the axiom of choice holds in 9~ the theorem of  Erd6s and 
Ratio holds in 91. Therefore by assuming b to have large enough cardinality in ~t 
we may find for each infinite cardinal in ~ a set c in 9~ of that cardinality with 
c tk) entirely in one equivalence class. The equivalence classes correspond in an 

obvious way to a o u { / / }  (where / /  is some element of  9I such that / /Cao).  
Thus there must be some e0 ~ ao u { / [ } such that there exists c e A of  arbitrarily 
large power in 9~ where c Ck) lies entirely in the equivalence class corresponding 
to e 0. 

Suppose (~(v~.-. vz),at) is the next element in the enur~eraticn of  t x A. 13y 

repeating the above argument there is an el e a l  u {/]}  and there are sets c of 
arbitrarily large cardinality in 9.I such that c tk~, c ~) lie entirely in the equivalence 
classes corresponding to eo, e 1. Proceed inductively to define e2,ea,. . . .  Using 
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these to define the values of H(0), H(1),..- will make I-IV consistent since each 
finite subset of I-IV is now satisfiable in 92. Theorem 4.2 is now proved. 

In [17] there is an example of an uncountable model for which Theorem 4.2 
fails. However we can prove some partial positive results about uncountable 
models. 

THEOREM 4.3. Suppose 92 is a model of ZF and AC, qo, ql, "'" a denumerable 
sequence of ordinals of 92, and 

U = {a ~ A : For some n, 92 ~ a ~ R(qn) } 

Then for each linearly ordered set (X ,  < ) there is a model 92 with U ~_ B such 
that (B,F,u)uEv is elementarily equivalent to ( A , E , u ) ~ u  , uE= uv for every 
u ~ U, and (X,  < ) is isomorphically embeddable in (B, F). 

COROLLARY. Theorem 4.2 holds for any model 9.[ of ZF and AC in which 
there is a countable sequence eofinal in the ordinals of 92. 

Proof. The difficulty in the proof is that the number of Skolem functions 
corresponding to Th ((A,E,  u)u ~ v) may be uncountable. 

However there is an enumeration Zo, Zl, "" of those Skolem terms which involve 
no constants corresponding to elements of U. Let tjj be the set of Skolem terms 
formed by substituting constants corresponding to elements of R(q~) for some 
of the free variables of zj. For a fixed ij the elements of tij have bounded length. 
Therefore for every b ~ A there will be set (in 92) of functions defined on b 
and corresponding to the Skolem terms of t o. Thus, we replace the denumer- 
able sequence of Skolem terms by a denumerable sequence of sets of Skolem 
terms. The rest of the proof is essentially as in that of Theorem 4.2. 

These methods may also be used to obtain "two-cardinal" theorems. We give 
two samples below. These are analogs of results in [12] and [15]. 

THEOREM 4.4. Suppose 92 is a countable model of ZF and AC, w and b cA 
and in 9.[, w = to and b = "~,,,,. Then for every linearly ordered set ( X  < )  there 
is a ~3 >-9A such that w is fixed but (X ,  <)  is isomorphically embeddable in 
(bF, F ) .  

Proof. We proceed parallel to the proof of Theorem 4.2. Consider 
Th((A,E,a)a~.4). For each formula having n + 1 free variables we add an 
n-ary function symbol f and the axiom: 

(I) (Vvl ... vn)(( ~ Vo)d?(Vo,'." vn) 

va)) 

Asbefore, we add a linearly ordered set (X, < ) o f  new constants, but new ,~e add 
axioms saying they are in b: 

(II) x E y a b (for all x < y in X). 
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Finally let H be a function: to ~ wLU {/}. We add axioms for each Skolem 

term ~,: 

(III) %(xl . . .  Xk) = a (if xl  < " "  < Xk and H(n) = a ~ wr,) 

and 

(IV) ~(x :  ... x,) ¢ w (if xl < ' - "  < x,) and H(n) = / . )  

As in the proof  of  Theorem 4.3, if we define some H such as to make I-IV consistent 
the theorem will be established. The definition of H is done inductively as before 
with one significant difference. Instead of  considering arbitrary sets of  ordinals, 
we now consider only sets c _~ b. 

Further, instead of seeking an equivalence class x~ith sets c of "arbitrarily large" 
cardinality in ~ with d k) in that class, we now seek an equivalence class such that 
for each ~ < to~ there is a set c of power ::~ (in 92) with d k) in that class. Since 
there are only a countable (in 9~) number of equivalence classes we can always find 

one such. The proof  otherwise is as in that of  Theorem 4.2. 

THEOREM 4.5. Suppose 9~ is a countable model of  ZF  and AC, w, b E A  and 

in 9~, w = co and b = "~,o. Then for  every linearly ordered set ( X ,  < )  there is a 

model ~ ~-9~ such that wr is countable and ( X ,  < )  is isomorphically embed- 

dable in (b r, F) .  

Proof. The proof is similar to that of  the previous theorem except now 
H : to-* {0, 1} and the axioms III and IV are: 

(III) z , (x l ," ' ,Xk)  = %(Yl,'",Yk) (whenever xl < "" < Xk and 

Yl < " "  < Yk and H(n) = 1) 

(IV) z,,(xl "" Xk) ~ W (whenever xl < "" < Xk and H(n) = 0). 

Notice that Theorem 4.4 is still true if we assume that in 9j, w is a regular 
cardinal and b = 2~+. Moreover, Theorem 4.5 is still true if we assume that in 9~, 
w is an infinite cardinal and b = 2~. In each case, the original proofs go through 
with the obvious modifications. Combining Theorem 4.5 with the two-cardinal 
theorem of Vaught [15], we obtain a corollary. 

COROLLARY. Let 9.I be a countable model of  Z F  and AC, a, b ~ A, and in 9J, 

a is a cardinal and b = 2~. Then for any two infinite cardinals r <= 2, there 

e x i s t s ~ -  ~i such that la l = Ib l = IBI  = 

Appendix to Section 4. Throughout  this paper we have assumed the Axiom 

of  Choice in the meta-languagc. In Section 4, moreover, we restricted crr~,ehes 

to models of  ZF + AC. It is the purpose of  the appendix to indicate how this 
latter restriction may be removed. Notice first that since the definition of  n~ 
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implicitly assumes the Axiom of  Choice, Theorems 4.4 and 4.5 may not even be 

meaningful for models in which the Axiom of Choice does not hold. However, 
we shall give a new definition of  "~ below which does not assume the Axiom of  

Choice. With this definition, we have: 

THEOREM. Theorems 4.2, 4.3, and 4.5 are true for models of ZF in general. 
Theorem 4.4 is true for any model of ZF in which ~ i  is regular. 

In Section 4 the fact that we were dealing with models of ZF + AC was used 
in two ways: first, to find functions in the model which act as "par t ia l"  Skolem 
functions, and second, to guarantee that the Erd6s-Rado Theorem was true in the 

model. 
The first of these uses can be eliminated as follows. Suppose 92 is a model of ZF, 

b ~ 92, ~b(Vo,.-', v.) a formula; then there is a function f ~  A with domain b" such 

that: 

v 1 E b/~ ""/~ v,,~ b / k ( 3  vo) d?(%,vt, ...,v,) -~, 

(3 Vo) (Vo ~f(v,, ..., v,) A ~(Vo, ".., v,)). 

Where in Section 4 the Skolem function determined a partition indexed over the 
elements of a set, we now have one indexed over the subsets of  that set. However 
this leads to only minor modifications in the proofs. The situation is even simpler 
in the proofs of  Theorems 4.4 and 4.5 since the set in question is co which is well- 
ordered without the Axiom of Choice. 

The rest of this appendix is devoted to the second problem: that of restating 
and proving the theorem or Erd6s and Rado (Theorem 4.1) in a form which 
does not depend on the Axiom of Choice. This will involve some ad hoc definitions 

of  cardinal arithmetic. 
We define a cardinal as an initial ordinal, x + is the least cardinal > x. The 

cardinality, I X I, of  a set X is the supremum of  those cardinals which can be 
mapped one-one into X. It is conceivable that some infinite cardinal r + is the 

union of  x sets each of  power r .  However, it can be shown that x + + is not the 
union of  x sets of power r .  Thus we can define for infinite cardinals r ,  r ° = largest 

cardinal which is the union of r sets each of power r.  The Axiom of Choice implies 
x ° = r .  For  each set x and eachordinal ~ we define a cardinal 2(x, ~) inductively by: 

2(x,O) = I x I ; 

2(x, ~ + 1) = least cardinal > 2(x, ~)o and 

->_ [ power set of 2(x, ct) ° I ; 

and for limit ordinals 6, 2(x, 6) = supremum of 2(x, ~), ~ < 6. 
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I f  one assumes the Axiom of  Choice this is the same as 2~ xl . Finally for  each set x 
and n ~ co, let x ~'° be the set of  all subsets o f x  having exactly n elements. 

TaEOREM. Suppose x is an infinite cardinal, I a set, n~o9, x >  2(l ,n)  °, 
and x ~n+l~= u C i  ( i~ I )  is a partition of  x(n+~into disjoint sets. Then there is 
a y e x  and an i ~ I  .such that lyl > I l l  and y(~+l)c C,. 

Praaf .  Notice first that  since x t '+ l ) can  be well ordered there  is no loss of  

generality in assuming that  I can be well ordered or indeed that  I = [I  1" (It is 
here that we use the assumption that  the C~ are disjoint.) The case n = 0 is now 
trivial. We proceed by induction. So suppose n > 0. 

We shall define for  each ~ ~ x a funct ion f~ satisfying the following ccndit icns:  

(i) ~ ~ fl implies f~ ~ f~ ; 
(ii) the domain  o f f ,  is an ordinal  < ~; 

(iii) fl ~ domain f ,  implies there is a ~, < c~ such that  f~ = f ,  ] ft. This 7 is unique 
by (i) and will be denoted by g(~, fl). 

(iv) if  fl ~ domain  f~ then f~(fl) is a function t : (13 + 1) ~"~ -~ I defined by 
t({zo, ... z~_l }) = that  i such that  {g(a, Zo), ..., g(~, %_1), c~} e Ci. 

F r o m  (iii) it follows that  a necessary and sufficient condit ion that  domain  f ,  = fl 

is that  fl < domain  f~ and for every fl < a, f~,[fl #f~lfl" It follows that  (i)-(iv) de- 
termines a unique set of  functions {f~, ct ~ k}. 

Suppose fl is an ordinal and Jill < 2(1, n - 1) °. We assert that  the set o f  a ~ x 
such that  domain  f~ =/3 has cardinality at most  2(I, n). To  show this notice that  

for  each 7 < fl there is a canonical map of  2: ~ i n t o / 3  "(ordinary ordinalexponen- 
tiation). Thus f~ may be identified with a sequence of  length/3 of  sequences each 
of  length /3 n of  elements f rom I. This in turn may be identified with a single 
sequence of  length </3~+ 1 of  elements of  I. Since 2(•, n - 1)°> ] I l the set of  such 
sequences has cardinality < 2(l ,n) .  Since there are at most  2(e,n) /3's with 

1/31---2(1,n- ~)o and x > 2(I ,n)  °, there must be some a E x  with [domainf~ [ 
> 2(1, n - 1) °. 

Fo r  this a, let x = {g(a, fl); /3 E domain  f ,}.  We define a part i t ion of  x t"' by 
letting D, = {a ~ x ~ '  ; a u {~} ~ C,}. By the induction hypothesis there is a y _ x 
and an i E I such that  ]yI  > 111 and y'~' < Di. Then y'"+ 1, _~ Ci, for  let b ~ y("+ 1,, 
7 be the largest element of  b; and a = b - {7}. Then a ~_ {a} E C, and therefore 
by (iii) b ~ Ci. The theorem is now proved. 

Epilogue. Do our  results apply to models of  a Bernays type set theory? 
More  generally, suppose 9.I = (A,  V,E, Rt ,R2,  . . . )  is a relation system with V a 

unary, E a binary relation and ( V , E )  a model  of  ZF. Is it true that  each of  our 
theorems can be modified to say that  there is an 92' = ( A ' ,  V',E' ,R~,R~,  ... ) such 

that  9.I' >- 9.I and ( V ' , E ' )  is an extension o f  (V, E )  of  the required kind? An 
examination of  the proofs  shows that  a sufficient condit ion for this to occur is that 
9.I satisfy the axiom schema of  replacement,  namely:  
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( V x ) [ V ( x )  ~ (3  ! y ) ( V ( y )  A ~b(x, y))] 

(Vz) IV(z) --* (3 u) (Vy)  (y  E u ~ V(y)  A (3 x) Ix e z A ~(x,y)])] 

for every formula q~. 
In particular our results apply to Bernays-Morse set theory (see Kelley [9]). 

However they do not apply to Bernays-G6del set theory (see [11]). Indeed, it is 

shown in [18] that there exists a countable model of Bernays-G~del in which 
there is a formula defining a one-one correspondence between V and a subset of  o9. 

Clearly this has no proper elementary extension in which o9 is left fixed. 
Do our results hold for models of Zermelo set theory (Z)? In general, the answer 

is yes except for those results which assert that the new model has ordinals which 
are greater than all ordinals of the old model. All the results of  Section 2, Theorem 
3.2, and Theorem 3.3 without part (iii), are still true if ZF is replaced by Z. Theo- 
rems 4.4 and 4.5 and its corollary are still true if 9~ is assumed to be a countable 
model of  Z + AC in which all cardinals mentioned in the hypotheses exist. In 

each case the original proof still goes through. For models of  Z the results may be 
stated in a more general form which applies to well ordered sets instead of  initial 

ordinals. For  instance, the conclusion of  Theorem 2.2 holds if 9~ is a countable 
model of Z and in 9~, a is the set of  all proper initial segments of a well-ordered 
structure whose order type is regular. And corresponding to Theorem 4.4 we 
have: I f  9.I is a countable model o f Z  + A C  and in 9~, w = o9 and b = R(o91), then 
for every cardinal k > o9 there exists ~3 ~ A such that w is fixed but br has power k. 

Our results for models of  Z can also be modified to apply to models 
9~= ( A , V , E ,  R 1 , R 2 , . . . )  such that ( V , E )  is a model of Z and 9~ satisfies the 
axiom scheme of subsets, namely: 

(Vz) IV(z) - ,  ( 3 u) (Vy) (y ~ u *--, y ~ z A ~b(y))] 

for every formula ~b. 
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